
1

Using Dominance Chains to Detect
Annotation Variants in Parsed Corpora

Pablo Faria

Abstract—In this paper, some results on the detection of variation in annotation in parsed corpora or treebanks are
presented. Treebanks are generally built by means of using both automatic tools (i.e., taggers and parsers) and human
intervention. In this process, inconsistencies (and, thus, variation) in the annotation arise, caused by a number of
factors, for instance, disagreement in interpretation, incomplete or unclear annotation guidelines, etc. In this study, the
algorithm for automatic detection of variation proposed in [1] is evaluated against the Tycho Brahe Corpus (TBC, [2])
and compared to an alternative implementation where variants of annotation are characterized by means of “dominance
chains”. Experimental results demonstrate that the modified version has better relative precision and recall than the original
method.

Keywords—treebank, inconsistency detection, syntactic annotation, dominance chain, computational linguistics

F

1 INTRODUCTION

THE last decades of corpus linguistics have
seen the construction of large syntactic an-

notated (i.e., parsed) corpora, called treebanks,
some of them consisting of millions of words.
The process of building such large databases
is costly and time consuming, taking several
years of continuos work. Although this mea-
sure is highly variable and depends on a num-
ber of factors, an example of this laborious
process is the Tycho Brahe Parsed Corpus of
Historical Portuguese (TBC): its publicized ver-
sion ([2]) has taken 14 years to reach the ap-
proximate number of 700,000 tokens.

In general, parsed corpora are built by
means of both automatic tools (i.e., taggers and
parsers) and human intervention: once current
state-of-the-art parsers hardly obtain more than
80% of accuracy, syntactic annotation still re-
quires a significant effort from human annota-
tors or reviewers in order to fix parsing errors
and omissions. Furthermore, this intervention

• Post-doctoral fellow
Universidade Estadual de Campinas (UNICAMP)
E-mail: pablofaria@gmail.com

Thanks to São Paulo Research Foundation – FAPESP – for funding
this research (Grant no. 13/18090-6). Also thanks to the reviewers
for their comments and suggestions.

is generally carried out by a team of reviewers,
frequently showing different degrees of ability
and experience with syntactic annotation.

It is thus inevitable that inconsistencies in the
annotation arise, caused by a number of factors,
for instance, disagreement in interpretation, in-
complete or unclear annotation guidelines, lack
of experience, among others. As a consequence,
many teams perform a double-revision strategy
where the revisions of less experienced review-
ers are subject to a final revision by a more
experienced one. Unfortunately, many inconsis-
tencies still survive this two-stage process. Such
inconsistencies may affect the accuracy of the
parser (see, for instance, [3]), since the training
corpus submitted to it is continually increased
by the last revised texts.

In this scenario, methods for detecting in-
consistencies play a very important role. They
provide a fast way of checking the overall
consistency of a corpus while providing exact
information about the kind of (common) incon-
sistencies found. With this information in hand,
corrections can be directly made to the current
corpus, adjustments can be made to annota-
tion guidelines, and the team of reviewers can
be trained with special emphasis on the main
sources of disagreement or difficulties.

The development of such methods is chal-

2

lenging and poses significant computational
and linguistic questions, such as matters of effi-
cient computation and grammatical covering of
the data. On the computational side, we have
to find algorithms capable of efficiently pro-
cessing the corpus and extracting the relevant
information, keeping the complexity of the task
under control. On the linguistic side, there are
different types of inconsistencies which vary
in their grammatical complexity: some are just
part-of-speech or syntactic labeling errors while
others may involve grammatical phenomena
for which the correct interpretation/analysis is
not at all clear.

Current methods of detection – such as the
ones discussed here, but also alternatives in [4]
and [5] – show a relative success in detecting
simpler inconsistencies but seem to be limited
regarding the more complex cases. Moving to-
wards the latter is thus the main goal of this
area of research. In this paper I present some
results on the detection of variation in annota-
tion in parsed corpora or treebanks. The method
of detection applied here is a version of the
method proposed in [1], modified in order to
use “dominance chains” as the basis for deter-
mining cases of variation in annotation. Results
demonstrate that the modification increases the
relative precision and recall of the algorithm.

The paper is organized as follows. Section 2
introduces some discussion about inconsisten-
cies in parsed corpora. In Section 3, the core
aspects of the method of detection in [1] and
the its modified version are presented and
discussed. Experimental results are reported
on Section 4 followed by a discussion. The
paper ends with some concluding remarks in
Section 5.

2 INCONSISTENCIES IN A CORPUS

One of the most important properties of a
corpus is its internal consistency, i.e., the extent
to which multiple occurrences of equivalent
(sequences of) elements are consistently anno-
tated in the same way. Many factors, such as
the complexity and clearness of the annotation
system, the experience and ability of the team
of annotators, the accuracy of the automatic
tools employed, among others, are related to

and may be worked out to improve the level
of consistency in annotation ([6], [7], [8]).

Blaheta ([9]) discusses the most recurrent
types of inconsistencies which he classifies into
three categories: detectable errors (“type A”),
fixable errors (“type B”) and systematic inconsis-
tencies (“type C”). Type A errors, as Figure 11

shows, are those where the “annotator’s intent”
is still clear, although the markup is wrong due
to lack of attention or confusion. In general,
Type A errors can be easily fixed since their
correct form can be automatically applied for
each and all instances of the errors.

Handling noisy training and testing data

Don Blaheta
Department of Computer Science

Brown University
dpb@cs.brown.edu

Abstract

In the field of empirical natural language
processing, researchers constantly deal with
large amounts of marked-up data; whether
the markup is done by the researcher or
someone else, human nature dictates that it
will have errors in it. This paper will more
fully characterise the problem and discuss
whether and when (and how) to correct the
errors. The discussion is illustrated with
specific examples involving function tagging
in the Penn treebank.

1 Introduction: Errors

Nobody’s perfect. A cliché, but in the field of empir-
ical natural language processing, we know it to be
true: on a daily basis, we work with large corpora
created by, and often marked up by, humans. Falli-
ble as ever, these humans have made errors. For the
errors in content, be they spelling, syntax, or some-
thing else, we can hope to build more robust systems
that will be able to handle them. But what of the
errors in markup?

In this paper, we propose a system for cataloguing
corpus errors, and discuss some strategies for dealing
with them as a research community. Finally, we will
present an example (function tagging) that demon-
strates the appropriateness of our methods.

2 An error taxonomy

2.1 Type A: Detectable errors

The easiest errors, which we have dubbed “Type A”,
are those that can be automatically detected and
fixed. These typically come up when there would
be multiple reasonable ways of tagging a certain in-
teresting situation: the markup guidelines arbitrarily
choose one, and the human annotator unthinkingly
uses the other.

!!""" ##$

%%&&

%%&&

!!'

the dealersby

NP
...should go here

This LGS tag...

VBN PP-LGS

INstarted

VP

Figure 1: A function tag error of Type A

The canonical example of this sort of thing is the
treebank’s LGS tag, representing the “logical sub-
ject” of a passive construction. It makes a great
deal of sense to put this tag on the NP object of
the ‘by’ construction; it makes almost as much sense
to tag the PP itself, especially since (given a choice)
most other function tags are put there. The tree-
bank guidelines specifically choose the former: “It
attaches to the NP object of by and not to the PP
node itself.” (Bies et al., 1995) Nevertheless, in sev-
eral cases the annotators put the tag on the PP, as
shown in Figure 1. We can automatically correct this
error by algorithmically removing the LGS tag from
any such PP and adding it to the object thereof.

The unifying feature of all Type A errors is that
the annotator’s intent is still clear. In the LGS case,
the annotator managed to clearly indicate the pres-
ence of a passive construction and its logical subject.
Since the transformation from what was marked to
what ought to have been marked is straightforward
and algorithmic, we can easily apply this correction
to all data.

2.2 Type B: Fixable errors

Next, we come to the Type B errors, those which
are fixable but require human intervention at some
point in the process. In theory, this category could
include errors that could be found automatically but
require a human to fix; this doesn’t happen in prac-
tice, because if an error is sufficiently systematic that

 Association for Computational Linguistics.
 Language Processing (EMNLP), Philadelphia, July 2002, pp. 111-116.
 Proceedings of the Conference on Empirical Methods in Natural

111

Figure 1. “Type A” error as defined in [9].

Type B and C errors, on the other hand,
demand human intervention in order to dis-
tinguish errors from true ambiguities, since
some variations in annotation are legitimate.
The difference between B and C categories is
that the corrections to be made to Type B errors,
once detected for certain, are clear. Blaheta sub-
divides Type B errors into two subcategories,
B1 and B2 exemplified in Figure 2, the former
being easier to detect than the latter one.

Type C errors, however, are those to which
the annotation guidelines lack orientations, are
neutral (i.e., there are guidelines but they de-
pend on the actual interpretation given to the
data) or are not clear about. In these cases, the
annotators are left with their own intuitions,
giving rise to possibly more subtle and complex
inconsistencies not only among annotators but
also in the annotations made by the same indi-
vidual. Figure 3 shows an example of a piece
of data interpreted in two different ways. Note
that both involve the same words and part-
of-speech tags but display distinct syntactic
phrasing.

1. Figures 1 and 2 are original examples from [9].

3

!!!""""

###$$$

%
%
%& '' ((

VP

ADVP

hard

NP

company

NP

Mistag—should be VBN

VBD

hit

PP

by ...

Figure 2: A part-of-speech error of Type B1

an algorithm can detect it and be certain that it is
in fact an error, it can usually be corrected with cer-
tainty as well. In practice, the instances of this class
of error are all cases where the computer can’t detect
the error for certain. However, for all Type B errors,
once detected, the correction that needs to be made
is clear, at least to a human observer with access to
the annotation guidelines.

Certain Type B errors are moderately easy to
find. When annotators misunderstand a complicated
markup guideline, they mismark in a somewhat pre-
dictable way. While not being totally systematically
detectable, an algorithm can leverage these patterns
to extract a list of tags or parses that might be incor-
rect, which a human can then examine. Some errors
of this type (henceforth “Type B1”) include:

• VBD / VBN. Often the past tense form of a verb
(VBD) and its past participle (VBN) have the
same form, and thus annotators sometimes mis-
take one for the other, as in Figure 2. Some such
cases are not detectable, which is why this is not
Type A.1

• IN / RB / RP. There are specific tests and guide-
lines for telling these three things apart, but fre-
quently a preposition (IN) is marked when an
adverb (RB) or particle (PRT) would be more
appropriate. If an IN is occurring somewhere
other than under a PP, it is likely to be a mistag.

Occasionally, an extracted list of maybe-errors will
be “perfect”, containing only instances that are ac-
tually corpus errors. This happens when the pat-
tern is a very good heuristic, though not necessarily
valid (which is why the errors are Type B1, and not
Type A). When filing corrections for these, it is still
best to annotate them individually, as the correc-
tions may later be applied to an expanded or modi-

1There is a subclass of this error which is Type A:
when we find a VBD whose grandparent is a VP headed
by a form of ‘have’, we can deterministically retag it as
VBN.

fied data set, for which the heuristic would no longer
be perfect.

Other fixable errors are pretty much isolated.
Within section 24 of the treebank, for instance, we
have:

• the word ‘long’ tagged as an adjective (JJ) when
clearly used as a verb (VB)

• the word ‘that’ parsed into a noun phrase instead
of heading a subordinate clause, as in Figure 3

• a phrase headed by ‘about’, as in ‘think about’,
tagged as a location (LOC)

These isolated errors (resulting, presumably, from
a typo or a moment of inattention on the part of
the annotator) are not in any way predictable, and
can be found essentially only by examining the out-
put of one’s algorithm, analysing the “errors”, and
noticing that the treebank was incorrect, rather than
(or in addition to) the algorithm. We will call these
Type B2.

2.3 Type C: Systematic inconsistency

Sometimes, there is a construction that the markup
guidelines writers didn’t think about, didn’t write
up, or weren’t clear about. In these cases, annota-
tors are left to rely on their own separate intuitions.
This leaves us with markup that is inconsistent and
therefore clearly partially in error, but with no obvi-
ous correction. There is really very little to be done
about these, aside from noting them and perhaps
controlling for them in the evaluation.

Some Type C errors in the treebank include:

• ‘ago’. English’s sole postposition seems to have
given annotators some difficulty. Lacking a
postposition tag, many tagged such occurrences
of ‘ago’ as a preposition (IN); others used the
adverb tag (RB) exclusively.2 Since some occur-
rences really are adverbs, this just makes a big
mess.

• ADVP-MNR. The MNR tag is meant to be ap-
plied to constituents denoting manner or instru-
ment. Some annotators (but not all) seemed
to decide that any adverbial phrase (ADVP)
headed by an ‘-ly’ word must get a MNR tag, ap-
plying it to words like ‘suddenly’, ‘significantly’,
and ‘clearly’.

2In particular, the annotators of sections 05, 09, 12,
17, 20, and 24 used IN sometimes, while the others tagged
all occurrences of ‘ago’ as adverbs.

112

(B1)

!!!"""

##$$$

%%&& %% &&

NONE

0

S

NP VP

were ...

SBAR

DT NNS

that subsidies

should be

!!!"""

##$$$

%% &&

IN S

NP VP

were ...

SBAR

that

NNS

subsidies

Figure 3: A parse error of Type B2

The hallmark of a Type C error is that even what
ought to be correct isn’t always clear, and as a result,
any plan to correct a group of Type C errors will
have to first include discussion on what the correct
markup guideline should be.

3 tsed

In order to effect these changes in some communi-
cable way, we have implemented a program called
tsed, by analogy with and inspired by the already
prevalent tgrep search program.3 It takes a search
pattern and a replacement pattern, and after find-
ing the constituent(s) that match the search pattern,
modifies them and prints the result. For those al-
ready familiar with tgrep search syntax, this should
be moderately intuitive.

To the basic pattern-matching syntax of tgrep, we
have added a few extra restriction patterns (for spec-
ifying sentence number and head word), as well as a
way of marking nodes for later reference in the re-
placement pattern (by simply wrapping a constituent
in square brackets instead of parentheses).

The replacement syntax is somewhat more com-
plicated, because wherever possible we want to be
able to construct the new trees by reference to the
old tree, in order to preserve modifiers and structure
we may not know about when we write the pattern.
For full details of the program’s abilities, consult the
program documentation, but here are the main ones:

• Relabelling. Constituents can be relabelled with
no change to any of their modifiers or children.

• Tagging. A tag can be added to or removed from
a constituent, without changing any modifiers or
children.

• Reference. Constituents in the search pattern
can be included by reference in the replacement
pattern.

3tgrep was written by Richard Pito of the University
of Pennsylvania, and comes with the treebank.

• Construction. New structure can be built by
specifying it in the usual S-expression format,
e.g. (NP (NN snork)). Usually used in combi-
nation with Reference patterns.

Along with tsed itself, we distribute a Perl pro-
gram wsjsed to process treebank change scripts like
the following:

{2429#0-b}<<EOF

NP $ [ADJP] > (VP / keep) (S \0 \1)

NP <<, markets - SBJ

EOF

This script would make a batch modification to the
zeroth sentence of the 29th file in section 24. The
batch includes two corrections: the first matches
a noun phrase (NP) whose sister is an ADJP and
whose parent is a VP headed by the word ‘keep’. The
matched NP node is replaced by a (created) S node
whose children will be that very NP and its sister
ADJP. The second correction then finds an NP that
ends in the word ‘markets’ and marks it with the SBJ
function tag.

Distributing changes in this form is important for
two reasons. First of all, by giving changes in their
minimal, most general forms, they are small and easy
to transmit, and easy to merge. Perhaps more im-
portantly, since corpora are usually copyrighted and
can only be used by paying a fee to the controlling
body (usually LDC or ELDA), we need a way to dis-
tribute only the changes, in a form that is useless
without having bought the original corpus. Scripts
for tsed, or for wsjsed, serve this purpose.

These programs are available from our website.4

4 When to correct

Now that we have analysed the different types of
errors that can occur and how to correct them, we
can discuss when and whether to do so.

4http://www.cs.brown.edu/~dpb/tsed/

113

(B2)

Figure 2. Examples of “Type B” errors ([9]).

PP

NP

PP

NP

NPR

Brasil

D

o

P

para

PP

NP

NPR

Regente

NPR

Prı́ncipe

D

o

P

de

N

partida

D

a

P

de

ADV

antes

ADVP

PP

NP

PP

NP

PP

NP

NPR

Brasil

D

o

P

para

NPR

Regente

NPR

Prı́ncipe

D

o

P

de

N

partida

D

a

P

de

ADV

antes

Figure 3. Examples of “Type C” errors in the
TBC.

3 DETECTION OF INCONSISTENCIES

In this study, a partial implementation of [1] –
which is based on ideas from [10] – was con-
ducted along with an alternative implementa-
tion of it in order to assess a particular intuition
on the nature of the problem. In this section,
first the core aspects of the method in [1] are
presented. Next, the alternative method is ex-
plained along with the concept of “dominance
chain”.

3.1 Finding and distinguishing variation
Dickinson & Meurers ([10], [1]) develop their
methods around the notion of variation: the
possibility that particular tokens or sequence
of tokens may be assigned distinct markups
(e.g, part-of-speech tags and/or syntactic an-
notation). Indeed, it is an intrinsic property of
natural languages to display legitimate vari-
ations. This is due to the fact that there are
homonymous words in all natural languages.
On the other hand, there are illegitimate cases,
as exemplified in the previous section, since
they originate from errors in annotation.

Thus, it would be interesting if we could find
such erroneous variations, but this is a two-
step problem: first we must be able to find
the variations so we can – in a second step
– proceed to distinguish the legitimate cases,
i.e., ambiguities, from the erroneous ones. In this
study, I am concerned with the first step, that of
finding variation, letting the second step aside.

Dickinson & Meurers ([1]) extend the ap-
proach in [10] to syntactic annotation. In [10],
they introduce the term variation n-gram for
sequences of n tokens in a corpus that con-
tain one or more tokens annotated differently
in another occurrence of the same n-gram in
the corpus. A token directly involved in the
variation is called variation nucleus. Making use
of the same concepts, the authors adapt the
method in such a way that a variation nucleus
is now the string (eventually unary) yielded by
a constituent instead of tokens in isolation. The
basic idea is to search for multiple occurrences
of strings which were at least once analyzed as
a constituent in the corpus.

Thus, for each instance of the string, its
position in the corpus and syntactic label is

4

recorded. However, some occurrences of a
string may not form a constituent of its own. In
Figure 4 bellow, I reproduce in a slightly sim-
plified version an example from [1] where the
second instance of “last month” does not form a
constituent. In cases like this, the authors opted
to assign a special label NIL.

NP

NP

monthlast

NP

joltbiggestits

NP

monthlastjoltbiggestits

Figure 4. Constituent and “non-constituent” in-
stances of a string (cf. [1]).

Some additional preprocessing is made to the
corpus, before calculating the variation nuclei.
First, functional annotation of syntactic cate-
gories is removed, since the authors believe
that the method is better suited for categories
than for syntactic functions. Thus, labels such
as NP-SBJ (clause subject) or IP-MAT (root
clause) used in the TBC annotation get stripped
from their -SBJ and -MAT portions, respec-
tively.

Sentences in the TBC and related treebanks
include “null elements”, i.e., elements inserted
in the trees in order to signal dislocation or
omission of arguments or adjuncts, unstated
units of measurement, and other things ([11]).
For example, in the TBC one finds elements
like [NP-SBJ *pro*] which signals the pres-
ence of a null subject. This kind of element is
largely determined by theoretical assumptions
and seems (cf. [1]) to be relatively indepen-
dent of the local environment where it appears.
Thus, the authors opted for not taking them
into account in the calculation of variation nu-
clei.

One last modification is the collapsing
of unary branching nodes, like [NP [NPR
John]], producing complex labels like
NP/NPR. This modification was necessary in

order to avoid redundancy since nodes related
via unary branching yield the same string
and will thus be considered variations of the
same nucleus. Here, I decided to rule out such
redundancies in a different way: the algorithm
records the smaller tree that still yield the
tokens of the variation nuclei.

After this preprocessing of the corpus, nuclei
can finally be calculated. The authors propose
the following algorithm to calculate the set of
nuclei of length i (1 ≤ i ≤ length-of-longest-
constituent-in-corpus):

1. Compute the set of nuclei:
a) Find all constituents of length i,

store them with their category
label.

b) For each distinct type of string
stored as a constituent of length
i, add the label NIL for each non-
constituent occurrence of that
string.

2. Compute the set of variation nuclei
by determining which of the nuclei
were stored in step 1 with more than
one label.

In addition to the steps above, the method
generates the variation n-grams in the same
way as that defined in [10]. The authors eval-
uate their method on the Wall Street Journal
corpus (WSJ) – which is a million token part
of the Penn Treebank-3 release ([12]) – and
report that there were 34,564 variation nuclei
found with sizes varying from 1 to 46. After
applying heuristics for classification2, a set of
6277 distinct variation nuclei was obtained.

From this output, 100 examples were ran-
domly sampled and 71 were confirmed to be
true errors. Taking the 95% confidence interval
for the point estimate .71 (.6211, .7989) and
applying it to the whole set of 6277 variation

2. The problem of classification is not part of the study
presented here. In the method developed by the authors, two
heuristics are used for the classification of syntactic variation
nuclei as either errors or ambiguities. First, only n-grams for
n ≥ 8 are taken into account in order to maximize the
probability of being an error. Second, the algorithm “distrusts
the fringe”, that is, variation nuclei located at the fringe of
variation n-grams are less likely to be errors and are thus taken
as probable ambiguities.

5

nuclei gives us a number of errors between
3898 and 5014. As the authors note, however,
this number would probably be larger, because
each variation nuclei predicts at least one occur-
rence of an erroneous instance.

3.2 Alternative implementation

For the purposes of what follows, let us dub
the original method as ‘dm2003’. Let us call
the alternative proposed here as ‘dm2003-alt’.
In ‘dm2003’, a given nucleus is taken as a
variation if the algorithm can find at least two
instances of it labeled by distinct categories,
including the artificial label NIL. This is so
despite of the internal structure of the syntactic
annotations involved.

Two facts seem to undermine this strategy:
first, it is absolutely possible that two instances
of a nucleus have the same constituent label but
distinct internal syntactic structures. As we can
see in Figure 5, although both trees are syntactic
variants of the nucleus, they will be considered
the same since they have the same root label.

PP

NP

N

terra

D

@a

P

d@

PP

NP

N

terra

D

@a

P

d@

Figure 5. Internal syntactic inconsistency.

The second fact is that although not forming
a constituent on its own, a particular instance
of a nucleus may still be syntactically consistent
with another instance. Take, for example, the
trees in Figure 6. There are two instances of
the nucleus “d@ @os homens”, both consistent
with each other on the structure assigned. The
only difference is that the NP node in the sec-
ond tree contains one more element which is
irrelevant in this case: we are in the face of
one and the same syntactic variant with respect
to those three words. Nonetheless, ‘dm2003’
will consider them as distinct variants, with the
second being labelled as NIL.

PP

NP

N

homens

D

@os

P

d@

PP

NP

Q

todos

N

homens

D

@os

P

d@

Figure 6. Consistency among two different
trees.

Given these facts, in ‘dm2003-alt’ the strategy
is to take the internal structure into account
when comparing instances. Let us introduce the
term “dominance chain” to make reference to
the complete sequence of nodes from the root
label to each terminal symbol in a tree. Thus,
for the trees in Figure 5, we have the dominance
chains in (1), while for the trees in Figure 6, we
have (2):

(1) (i) PP-P-d@
PP-D-@a
PP-NP-N-terra

(ii) PP-P-d@
PP-NP-D-@a
PP-NP-N-terra

(2) (i) PP-P-d@
PP-NP-D-@os
PP-NP-N-homens

(ii) PP-P-d@
PP-NP-D-@os
PP-NP-N-homens
PP-NP-Q-todos

By comparing the dominance chains for the
nuclei “d@ @a terra” and “d@ @os homens”,
we obtain the desired result of differentiating
(1i) from (1ii) while equating (2i) and (2ii).
The alternative algorithm for finding variation
nuclei in ‘dm2003-alt’ is the following:

1. Compute the set of nuclei:
a) Find all constituents of length

i, store them with their dominance
chains.

b) For each distinct type of string
stored as a constituent of length
i, find occurrences of that string
with distinct sets of dominance

6

chains.3

2. Compute the set of variation nuclei
by determining which of the nuclei
were stored in step 1 with two or
more distinct sets of dominance chains.

4 EXPERIMENTAL RESULTS

In this section, results of the application of
’dm2003’ and ’dm2003-alt’ to the TBC are pre-
sented. The main goal of the experiments is
to assess the relative precision of each method
in finding true variations as well as in their
relative recall, that is, checking whether the al-
ternative method actually find more variations
than the original. The results indicate that this
is the case.

4.1 Corpus
The two methods were applied to the current
publicized version of the TBC ([2]). It consists
of 16 parsed texts which comprise a total4

of 672,404 tokens distributed over 34,263 sen-
tences. Two different runs of the algorithms
were performed, one for the first 1000 sen-
tences (16,951 tokens) from the parsed text
file a_001_psd.txt and another run for the
whole corpus.

4.2 Relative precision and recall
The total number of variation nuclei found
by ’dm2003’ for the partial corpus is 606 and
the longest nuclei found has 5 tokens. The
alternative ’dm2003-alt’ found 202 variation nu-
clei, with maximum length of 4 tokens.5 The
two sets intersect in a total of 188 variation
nuclei. Apart from these, all of the 418 cases
exclusively captured as variation nuclei by the
original method turned out to be confirmed as
non-variants, in the strict sense adopted here.
In other words, for each variation nucleus in

3. The lengths of the dominance chains of a given occurrence
are bounded by the first dominating node that yield it (exclu-
sively or not).

4. Excluding empty elements and non-textual tokens tagged
as CODE or ID.

5. Detailed outputs are available at:
http://pablofaria.com.br/experiments/dhandes-output/.

those 418 cases, the ”variants” have the same
set of dominance chains and, thus, the same
syntactic annotation.

This result demonstrates that the relative6

precision of the original method for the partial
corpus is only 31,02%. On the other hand,
14 variations of the 202 found by ’dm2003-
alt’ are true variants missed by the original
method. This result demonstrate that the orig-
inal method is not capable of finding all varia-
tion, showing a relative recall of 93,06% for the
partial corpus.

For the whole corpus, results are similar.
The method ’dm2003’ found 26,363 variation
nuclei with length up to 25 while ’dm2003-alt’
found 10,780 variation nuclei with length up
to 23. Figure 7 shows a ‘four variant’ variation
nucleus found by the alternative method. The
two sets intersect in 9,810 variation nuclei. As-
suming that the remaining variations found by
the original method are not true variations, as
the results with the partial corpus indicate, we
obtain a recall of 91%, similar but slightly lower
than that for the partial corpus. The relative
precision of the original method, on the other
hand, increases for the whole corpus, reaching
37,21%.

4.3 Discussion
Both methods benefit from larger corpora since
their sizes increase the chance for repetitions
of token sequences to happen. In fact, if an
error in annotation occurs for a non-repeating
sequence of tokens it will never be found by
the methods discussed here. But the above re-
sults seem to indicate that the original method
is particularly dependent on the number and
variety of inconsistencies in the corpus, that is,
it depends on the fact that at least one variant of
a given nucleus appears with a different label
or as a non-constituent. The alternative method
overcomes this limitation.

We must conclude that the low performance
of the original method results from a miscon-
ception of what a syntactic variation is. As

6. Absolute measures are not possible here, since we lack
the precise number of variations existent in the corpus. Thus,
the measures for the original method are relative to the perfor-
mance of the alternative implementation.

7

PP

NUMP

CONJP

NUMP

NUM

sessenta

CONJ

e

CONJP

NUMP

NUM

quinhentos

CONJ

e

NUMP

NUM

mil

P

de

PP

NUMP

CONJP

NUMP

NUM

sessenta

CONJ

e

NUMP

NUM

quinhentos

CONJ

e

NUM

mil

P

de

PP

NUMP

NUM

sessenta

CONJ

e

NUM

quinhentos

CONJ

e

NUM

mil

P

de

PP

NP

NUM

dous

CONJ

e

NUM

sessenta

CONJ

e

NUM

quinhentos

CONJ

e

NUM

mil

P

de

Figure 7. Variants of the nucleus “de mil e
quinhentos e sessenta” found by the alternative
method.

described in Section 3.1, a given nucleus is not
considered as a variation if all of its instances
have the same root label. Thus, differences
in their internal structure are not taken into
account. Dickinson & Meurers ([1]) suggest
that the internal structure gets inspected when
smaller nuclei are verified, but this does not

solve the problem, since some of the variation
in higher contexts in the tree continue to be
missed. And this is particularly problematic
for their method, because only variation nuclei
with length i ≥ 8 are (possibly) classified as
errors.

4.4 The overall sensibility of the methods
The methods evaluated here are limited in
many respects. First, they deliberately ignore
functional sub-labels. Thus, errors such as the
one shown on Figure 1 are not captured by
these methods. An account of sub-labels, how-
ever, is not a matter of just inhibiting the step
in the preprocessing of the corpus where labels
get stripped of them. Since this kind of vari-
ation presuppose identical categorial contexts,
they seem to demand an approach similar to
the one sketched bellow for empty categories.

Although strongly determined by theory in-
ternal considerations, empty categories are still
a possible locus of inconsistency and as such
should also be analyzed. The intuition is that
a variation relative to these elements must
be characterized by the occurrence of two or
more identical syntactic structures (regarding
the non-empty elements) varying in the empty
elements assigned.

Thus, it would take two steps in order to
identify them, that is, one for the detection of
identical non-empty instances of a nucleus and
a further step to check whether these instances
vary in their empty elements. This second step
is not obvious, however, since it would demand
a more substantial set of particular theoretical
assumptions in order to determine the correct
evaluation of these elements.

One last important source of limitation is
the use of tokens as the units that constitute
a nucleus of variation. It is well known that
the lexicon is the main source of idiosyncrasies
among languages. Although the performance
seems to be satisfactory for languages like
English or Brazilian Portuguese, for morpho-
logical richer languages the performance will
decrease, maybe substantially, because repeti-
tions of long sequences of tokens will be far
more infrequent. These repetitions would also
be infrequent for small corpora, despite the
language involved.

8

The obvious move, in this case, would be
to use part-of-speech tags instead of tokens
as the relevant units. This is currently under
investigation and the first results of runs to first
1000 sentences of the TBC indicate that a great
deal of variation is possibly being obscured
by lexical idiosyncrasies, since the number of
variation nuclei found by ’dm2003-alt’ is 413
which is more than two times greater than the
number found using tokens.

Nonetheless, initial inspection of the varia-
tions found shows that more intricate questions
arise when using tags and not all of the vari-
ation detected are in fact variation, specially
when structures of adjunction and/or coordi-
nation are involved. A more robust process-
ing of syntactic structures is needed in this
case, such as those proposed in [4] and [5],
for example, which apply explicit grammatical
formalisms in order to describe tree structures.

5 SUMMARY

As the number of initiatives concerned with
treebank building grows up, detecting vari-
ations in annotated corpora becomes an in-
creasingly important area of research. In this
study, an implementation of the variation de-
tection algorithm proposed in [1] was evaluated
against the Tycho Brahe Corpus. Along with
the original method, an alternative implemen-
tation differing in the way variation is defined
was also evaluated.

It was demonstrated that the use of domi-
nance chains instead of the root label for the
characterization of variants improve the preci-
sion and recall of the procedure. This modifi-
cation must be interpreted as a step towards a
more adequate treatment of the data, given its
particularities. Since we are dealing with syn-
tactically annotated corpora, we should make
use of all the information that such annotation
can provide, for instance, dominance chains.

The decisive step, however, is to apply ex-
plicit grammatical formalisms in order to bet-
ter describe the data and evaluate candidate
variants. The complexity of syntactic structures
need be taken into account since trees with
quite distinct terminal nodes may still be equiv-
alent to each other in higher domains of their

(sub)structures. Thus, although terminal nodes
are certainly a starting point for finding vari-
ants, they are not sufficient.

REFERENCES

[1] M. Dickinson and W. D. Meurers, “Detecting inconsisten-
cies in treebanks,” in Proceedings of TLT, vol. 3, 2003, pp.
45–56.

[2] C. Galves and P. Faria. (2010) Tycho brahe parsed
corpus of historical portuguese. [Online]. Available:
http://goo.gl/cu4N6w

[3] Y. Matsumoto and T. Yamashita, “Using machine learn-
ing methods to improve quality of tagged corpora and
learning models.” in LREC, 2000.

[4] Y. Kato and S. Matsubara, “Correcting errors in a tree-
bank based on synchronous tree substitution grammar,”
in Proceedings of the ACL 2010 Conference Short Papers, ser.
ACLShort ’10. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2010, pp. 74–79.

[5] S. Kulick, A. Bies, and J. Mott, “Using derivation trees
for treebank error detection.” in ACL (Short Papers), 2011,
pp. 693–698.

[6] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini,
“Building a large annotated corpus of english: the penn
treebank,” Comput. Linguist., vol. 19, no. 2, pp. 313–330,
Jun. 1993.

[7] C. Galves and H. Britto, “A construção do corpus ano-
tado do português histórico tycho brahe: o sistema de
anotação morfológica,” in Actas do IV Encontro para o
Processamento Computacional da Lı́ngua Portuguesa Escrita e
Falada (PROPOR’99), I. Rodrigues and P. Quaresma, Eds.,
Évora, September 1999, pp. 81–90.

[8] T. McEnery and A. Hardie, Corpus linguistics: method,
theory and practice. New York, NY, USA: Cambridge
University Press, 2012.

[9] D. Blaheta, “Handling noisy training and testing data,”
in Proceedings of the ACL-02 conference on Empirical methods
in natural language processing - Volume 10, ser. EMNLP ’02.
Stroudsburg, PA, USA: Association for Computational
Linguistics, 2002, pp. 111–116.

[10] M. Dickinson and W. D. Meurers, “Detecting errors
in part-of-speech annotation,” in Proceedings of the 10th
Conference of the European Chapter of the Association for
Computational Linguistics (EACL-03), Budapest, Hungary,
2003, pp. 107–114.

[11] C. Galves. (2008) Syntactic annotation system (of
the tycho brahe corpus). [Online]. Available: http:
//goo.gl/YaR7g7

[12] M. Marcus, B. Santorini, M. A. Marcinkiewicz, and
A. Taylor. (1999) Treebank-3 ldc99t42. Web Download.
Philadelphia: Linguistic Data Consortium. [Online].
Available: https://catalog.ldc.upenn.edu/LDC99T42

